Quantcast
Channel: Latest Results
Viewing all articles
Browse latest Browse all 1089

Super-Resolution Reconstruction via Multi-frame Defocused Images Based on PSF Estimation and Compressive Sensing

$
0
0

Abstract

Image super-resolution reconstruction is an effective method to improve image resolution, but most reconstruction methods rely on the clear low resolution images ignoring the blurred images which are also effective observations of the scene. Aiming at the problem, a super-resolution reconstruction (SRR) method via multi-frame defocused images is proposed. Firstly, according to the image degraded model, we establish the cost function of the point spread function (PSF) and utilize the particle swarm optimization algorithm to estimate it. Then, based on the multi-frame defocused images and PSFs, a joint reconstruction model is established to realize SRR by compressive sensing (CS) theory. In the CS framework, only the interpolated version of the low-resolution image is used for training purpose and the K-Singular Value Decomposition method is used for dictionary training. In addition, to solve the edge effect problem, an internal blur matrix is constructed according to the image blurring process, and a weight coefficient is introduced in the patch splicing process. Experiments show that the proposed algorithm can accurately estimate the defocused image PSF and achieve a good reconstruction effect.


Viewing all articles
Browse latest Browse all 1089

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>