Abstract
Since its discovery, the direct imaging and determination of the crystal structure of few-layer graphdiyne has proven difficult because it is too delicate under irradiation by an electron beam. In this work, the crystal structure of a six-layered graphdiyne nanosheet was directly observed by low-voltage transmission electron microscopy (TEM) using low current density. The combined use of high-resolution TEM (HRTEM) simulation, electron energy-loss spectroscopy, and electron diffraction revealed that the as-synthesized nanosheet was crystalline graphdiyne with a thickness of 2.19 nm (corresponding to a thickness of six layers) and showed ABC stacking. Thus, this work provides direct evidence for the existence and crystal structure of few-layer graphdiyne, which is a new type of two-dimensional carbon material complementary to graphene.
